

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Laravel OVH Object Storage driver

[image: _images/laravel-ovh.svg]Latest Version on Packagist [https://packagist.org/packages/sausin/laravel-ovh]
[image: _images/badge.svg]Continuous Integration [https://github.com/sausin/laravel-ovh/actions?query=workflow%3A%22CI+laravel-ovh%22]
[image: _images/laravel-ovh1.svg]Quality Score [https://scrutinizer-ci.com/g/sausin/laravel-ovh]
[image: _images/laravel-ovh2.svg]Total Downloads [https://packagist.org/packages/sausin/laravel-ovh]
[image: _images/License-MIT-yellow.svg]License: MIT [https://opensource.org/licenses/MIT]

Laravel Storage facade provides support for many different filesystems.

This is a wrapper to provide support in Laravel for OVH Object Storage [https://www.ovh.ie/public-cloud/storage/object-storage/].

Installation

Install via composer:

composer require sausin/laravel-ovh

Please see below for the details on various branches. You can choose the version of the package which is suitable for your development.
Also, take note of the upgrade.

Package version	PHP compatibility	Laravel versions	Special features of OVH	Status
—————	:—————:	:————–:	:—————————————:	:———
1.2.x	^7.0 - ^7.1	>=5.4, <=5.8	Temporary Url Support	Deprecated
2.x	>=7.1	>=5.4, <=6.x	Above + Expiring Objects + Custom Domains	Deprecated
3.x	>=7.1	>=5.4, <=7.x	Above + Keystone v3 API	Deprecated
4.x	>=7.2	>=5.4	Above + Set private key on container	Deprecated
5.x	>=7.4	>=5.8	Above + Config-based Expiring Objects + Form Post Signature + Prefix	Maintained
6.x	>=7.4	>=7.x	PHP 8 support	Active
7.x	>=8.0	>=9.x	Laravel 9 support	Active

If you are using Laravel versions older than 5.5, add the service provider to the providers array in config/app.php:

Sausin\LaravelOvh\OVHServiceProvider::class

Define the ovh driver in the config/filesystems.php
as below

'ovh' => [
 'driver' => 'ovh',
 'authUrl' => env('OS_AUTH_URL', 'https://auth.cloud.ovh.net/v3/'),
 'projectId' => env('OS_PROJECT_ID'),
 'region' => env('OS_REGION_NAME'),
 'userDomain' => env('OS_USER_DOMAIN_NAME', 'Default'),
 'username' => env('OS_USERNAME'),
 'password' => env('OS_PASSWORD'),
 'containerName' => env('OS_CONTAINER_NAME'),

 // Since v1.2
 // Optional variable and only if you are using temporary signed urls.
 // You can also set a new key using the command 'php artisan ovh:set-temp-url-key'.
 'tempUrlKey' => env('OS_TEMP_URL_KEY'),

 // Since v2.1
 // Optional variable and only if you have setup a custom endpoint.
 'endpoint' => env('OS_CUSTOM_ENDPOINT'),

 // Optional variables for handling large objects.
 // Defaults below are 300MB threshold & 100MB segments.
 'swiftLargeObjectThreshold' => env('OS_LARGE_OBJECT_THRESHOLD', 300 * 1024 * 1024),
 'swiftSegmentSize' => env('OS_SEGMENT_SIZE', 100 * 1024 * 1024),
 'swiftSegmentContainer' => env('OS_SEGMENT_CONTAINER', null),

 // Optional variable and only if you would like to DELETE all uploaded object by DEFAULT.
 // This allows you to set an 'expiration' time for every new uploaded object to
 // your container. This will not affect objects already in your container.
 //
 // If you're not willing to DELETE uploaded objects by DEFAULT, leave it empty.
 // Really, if you don't know what you're doing, you should leave this empty as well.
 'deleteAfter' => env('OS_DEFAULT_DELETE_AFTER', null),

 // Optional variable to cache your storage objects in memory
 // You must require league/flysystem-cached-adapter to enable caching
 // This option is not available on laravel-ovh >= 7.0
 'cache' => true, // Defaults to false

 // Optional variable to set a prefix on all paths
 'prefix' => null,
],

Define the correct env variables above in your .env file (to correspond to the values above),
and you should now have a working OVH Object Storage setup :smile:.

The environment variable OS_AUTH_URL is normally not going to be any different for OVH users and hence doesn’t need to
be specified. To get the values for remaining variables (like OS_USERNAME, OS_REGION_NAME, OS_CONTAINER_NAME,
etc…), you can download the configuration file with details from OVH’s Horizon or Control Panel:

	OVH Control Panel: Public cloud -> Project Management -> Users & Roles -> Download Openstack's RC file

	OVH Horizon: Project -> API Access -> Download OpenStack RC File -> Identity API v3

Be sure to clear your app’s config cache after finishing this library’s configuration:

php artisan config:cache

NOTE: Downloading your RC config file from OVH Control Panel will provide Identity v2 variable names.
However, for this package, the following variables are equivalent:

laravel-ovh variable name	OVH’s RC variable name
—————————	———————-
OS_PROJECT_ID	OS_TENANT_ID
OS_PROJECT_NAME	OS_TENANT_NAME

You can safely place the values from the Identity v2 variables and place them in the corresponding variable for this package.

Upgrade Notes

From 3.x to 4.x

Starting with 4.x branch, the variables to be defined in the .env file
have been renamed to reflect the names used by OpenStack in their configuration file. This is to
remove any discrepancy in understanding which variable should go where. This also means that
the package might fail to work unless the variable names in the .env file are updated.

From 4.x to 5.x

Starting with 5.x branch, the variables to be defined in the config/filesystems.php
file have been renamed to better correspond with the names used by OpenStack in their configuration file. This
is intended to give the developer a better understanding of the contents of each configuration
key. If you’re coming from 3.x, updating the variable names in the .env might be essential to prevent failure.

From 5.x/6.x to 7.x

Starting with 7.x branch, only Laravel 9 and PHP 8 are supported. The cache option should be removed from
your config if you previously used it since Flysystem no longer supports “cached adapters”.

Usage

Refer to the extensive Laravel Storage Documentation [https://laravel.com/docs/7.x/filesystem] for usage.

NOTE: This package includes support for the following additional methods:

Storage::url()
Storage::temporaryUrl()

The temporaryUrl() method is relevant for private containers where files are not publicly accessible
under normal conditions. This generates a temporary signed url. For more details, please refer
to OVH’s Temporary URL Documentation [https://docs.ovh.com/gb/en/public-cloud/share_an_object_via_a_temporary_url/].

Remember that this functionality requires the container to have a proper key stored.
The key in the header should match the tempUrlKey specified in config/filesystems.php.
For more details on how to set up the header on your OVH container, please refer to
Generate the temporary address (tempurl) [https://docs.ovh.com/gb/en/public-cloud/share_an_object_via_a_temporary_url/#generate-the-temporary-address-tempurl].

Alternatively, since version 4.x you can use the following commands:

Automatically generate a key
php artisan ovh:set-temp-url-key

Generate a key for a specific disk
php artisan ovh:set-temp-url-key --disk="other-ovh-disk"

Set a specific key
php artisan ovh:set-temp-url-key --key=your-private-key

The package will then set the relevant key on your container and present it to you. If a key
has already been set up previously, the package will warn you before overriding the existing
key. If you’d like to force a new key anyway, you may use the --force flag with the command.

Once you got your key configured in your container, you must add it to your .env file:

OS_TEMP_URL_KEY='your-private-key'

Configuring a Custom Domain Name (Custom Endpoint)

OVH’s Object Storage allows you to point a Custom Domain Name or Endpoint to an individual
container. For this, you must setup some records with your DNS provider, which will authorize
the forwarded requests coming from your Endpoint to OVH’s servers.

In order to use a Custom Domain Name, you must specify it in your .env file:

OS_CUSTOM_ENDPOINT="http://my-endpoint.example.com"

For more information, please refer to OVH’s Custom Domain Documentation [https://docs.ovh.com/gb/en/storage/pcs/link-domain/].

Uploading Automatically Expiring Objects

This library allows you to add expiration time to uploaded objects. There are 2 ways to do it:

	Specifying expiration time programmatically:

	You can either specify the number of seconds after which the uploaded object should be deleted:

// Automatically expire after 1 hour of being uploaded.
Storage::disk('ovh')->put('path/to/file.jpg', $contents, ['deleteAfter' => 60*60]);

	Or, you can also specify a timestamp after which the uploaded object should be deleted:

// Automatically delete at the beginning of next month.
Storage::disk('ovh')->put('path/to/file.jpg', $contents, ['deleteAt' => now()->addMonth()->startOfMonth()])

	Specifying default expiration time via .env file. This will set an expiration time (in seconds)
to every newly uploaded object by default:

Delete every object after 3 days of being uploaded
OS_DELETE_AFTER=259200

For more information about these variables, please refer to
OVH’s Automatic Object Deletion Documentation [https://docs.ovh.com/gb/en/storage/configure_automatic_object_deletion/]

Large Object Support

This library can help you optimize the upload speeds of large objects (such as videos or disk images)
automatically by detecting file size thresholds and splitting the file into lighter segments. This will
improve upload speeds by writing multiple segments into multiple Object Storage nodes simultaneously.

By default, the size threshold to detect a Large Object is set to 300MB, and the segment size to split
the file is set to 100MB. If you would like to change these values, you must specify the following
variables in your .env file (in Bytes):

Set size threshold to 1GB
OS_LARGE_OBJECT_THRESHOLD=1073741824
Set segment size to 200MB
OS_SEGMENT_SIZE=209715200

If you would like to use a separate container for storing your Large Object Segments,
you can do so by specifing the following variable in your .env file:

OS_SEGMENT_CONTAINER="large-object-container-name"

Using a separate container for storing the segments of your Large Objects can be beneficial in
some cases, to learn more about this, please refer to
OpenStack’s Last Note on Using Swift for Large Objects [https://docs.openstack.org/swift/stein/overview_large_objects.html#using-swift]

To learn more about segmented uploads for large objects, please refer to:

	OVH’s Optimizing Large Object Uploads Documentation [https://docs.ovh.com/gb/en/storage/optimised_method_for_uploading_files_to_object_storage/]

	OpenStack’s Large Object Support Documentation [https://docs.openstack.org/swift/latest/overview_large_objects.html]

Form Post Middleware

While this feature in not documented by the OVH team, it’s explained in the
OpenStack’s Documentation [https://docs.openstack.org/swift/latest/api/form_post_middleware.html].

This feature allows for uploading of files directly to the OVH servers rather than going through the application servers
(thus improving the efficiency in the upload cycle).

You must generate a valid FormPost signature, for which you can use the following function:

Storage::disk('ovh')->getAdapter()->getFormPostSignature($path, $expiresAt, $redirect, $maxFileCount, $maxFileSize);

Where:

	$path is the directory path in which you would like to store the files.

	$expiresAt is a DateTimeInterface object that specifies a date in which the FormPost signature will expire.

	$redirect is the URL to which the user will be redirected once all files finish uploading. Defaults to null to prevent redirects.

	$maxFileCount is the max quantity of files that the user will be able to upload using the signature. Defaults to 1 file.

	$maxFileSize is the size limit that each uploaded file can have. Defaults to 25 MB (25*1024*1024).

After obtaining the signature, you need to pass the signature data to your HTML form:

<form action="{{ $url }}" method="POST" enctype="multipart/form-data">
 <input type="hidden" name="redirect" value="{{ $redirect }}">
 <input type="hidden" name="max_file_count" value="{{ $maxFileCount }}">
 <input type="hidden" name="max_file_size" value="{{ $maxFileSize }}">

 <input type="hidden" name="expires" value="{{ $expiresAt->getTimestamp() }}">
 <input type="hidden" name="signature" value="{{ $signature }}">

 <input type="file">
</form>

NOTE: The upload method in the form must be type of POST.

NOTE: As this will be a cross origin request, appropriate headers are needed on the container. See the use of command php artisan ovh:set-cors-headers further.

The $url variable refers to the path URL to your container, you can get it by passing the path to the adapter getUrl:

$url = Storage::disk('ovh')->getAdapter()->getUrl($path);

NOTE: If you’ve setup a custom domain for your Object Storage container, you can use that domain (along with the corresponding path)
to upload your files without exposing your OVH’s URL scheme.

Examples

// Generate a signature that allows an upload to the 'images' directory for the next 10 minutes.
Storage::disk('ovh')->getAdapter()->getFormPostSignature('images', now()->addMinutes(10));

// Generate a signature that redirects to a url after successful file upload to the root of the container.
Storage::disk('ovh')->getAdapter()->getFormPostSignature('', now()->addMinutes(5), route('file-uploaded'));

// Generate a signature that allows upload of 3 files until next day.
Storage::disk('ovh')->getAdapter()->getFormPostSignature('', now()->addDay(), null, 3);

// Generate a signature that allows to upload 1 file of 1GB until the next hour.
Storage::disk('ovh')->getAdapter()->getFormPostSignature('', now()->addHour(), null, 1, 1 * 1024 * 1024 * 1024);

Setting up Access Control headers on the container

For the setup above to work correctly, the container must have the correct headers set on it. This package provides a convenient way to set them up using the below command

php artisan ovh:set-cors-headers

By default this will allow all origins to be able to upload on the container. However, if you would like to allow only specific origin(s) you may use the --origins flag.

If these headers were already set previously, the command will seek confirmation before overriding the existing headers.

Prefix & Multi-tenancy

As noted above, prefix parameter was introduced in release 5.3.0. This means that any path specified when using the package will be prefixed with the given string. Nothing is added by default (or if the parameter has not been set at all).

For example, when prefix has been set as foo in the config, the following command:

Storage::disk('ovh')->url('/');

will generate a url as if it was requested with a path of /foo (i.e. the specified prefix has been used).

This is particularly powerful in a multi-tenant setup. The same container can be used for all tenants and yet each tenant can have its own folder, almost automatically. The middleware where the tenant is being set can be updated, and using the below command:

Config::set('filesystems.disks.ovh.prefix', 'someprefixvalue')

a separate custom prefix will be set for each tenant!

Both examples above assume the disk has been named as ovh in the config. Replace with the correct name for your case.

Credits

	ThePHPLeague for the awesome Flysystem [https://github.com/thephpleague/flysystem]!

	Chris Harvey [https://github.com/chrisnharvey] for the Flysystem OpenStack SwiftAdapter [https://github.com/nimbusoftltd/flysystem-openstack-swift].

	Rackspace for maintaining the PHP OpenStack Repo [https://github.com/php-opencloud/openstack].

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

